

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
AUTONOMY, ARTIFICIAL INTELLIGENCE, AND ROBOTICS TECHNICAL SESSION

AUGUST 11-13, 2020 - NOVI, MICHIGAN

An Open, ROS2, AGVRA-Based Autonomy Software Architecture
for Military Robotic and Autonomous Systems

William Thomasmeyer1, Jon St. John1, Dave Martin2, Rich Mattes2

1National Advanced Mobility Consortium, Ann Arbor, MI

2Neya Systems, Pittsburgh, PA

ABSTRACT

This paper reports on a prototype project to develop and mature a common, open, comprehensive, collaboratively
developed, Government-owned, autonomy software architecture for ground robotic and autonomous systems (RAS).
The prototype architecture, codenamed “SCION” promises the flexibility needed by the both the Government and
industry research, development, testing, and engineering (RDT&E) communities to leverage reusable software and more
rapidly innovate new capabilities; while ensuring the discipline and enabling the modularity required to develop
RDT&E software structured to meet the software safety, cybersecurity, upgradeability, and other needs of RAS programs
of record. Accordingly, program offices can adopt an acquisition strategy that requires compatibility with the de facto,
military RAS standard, SCION architecture, while providing OEMs with baseline, SCION-compatible, GFE software
(e.g. a future version of RTK). Such a strategy encourages optimal innovation, increases competition, provides for
greater IP flexibility, and incentivizes OEMs to propose solutions based on the GFE software, while ensuring that the
responsibility and accountability for the software remain with the OEM.

Citation: A. William Thomasmeyer, Jon St. John, Dave Martin, Rich Mattes, “An Open, ROS2, AGVRA-Based Autonomy
Software Architecture for Military Robotic and Autonomous Systems”, In Proceedings of the Ground Vehicle Systems Engineering
and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020.

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 2 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

1. INTRODUCTION
 As the United States ARMY CCDC Ground Vehicle

Systems Center (GVSC) endeavors to achieve the ARMY
Robotics and Autonomous Systems (RAS) strategic
objectives, multiple simultaneous programs have emerged,
each with a different purpose, scope and timeframe.
Programs and projects related to offering effective
autonomous robotics solutions to the warfighter include:

The varying developmental timeframes and scope of each
of the programs mentioned above poses unique challenges,
including those related to differences and deviations from
program to program in the software architectures. At the
same time, a growing topic of discussion among the many
Army organizations responsible for the development,
fielding, and maintenance of unmanned ground vehicles is
the need for an open, common, and modular software
architecture (ideally aligned with the emerging AGVRA
framework) that would accelerate the development and
eventual fielding of autonomous tactical behaviors for
military RAS.

As part of their next phase plans, several of the above
named projects are beginning to take preliminary steps to
reconcile the differences in the current software
architectures. For example, the plans for AGR increment 3
include an effort to merge elements of the RTK architecture
into the existing ROS1 based, AGR architecture. And the
MARS project proposes in year 2 to undertake a study to
identify one or more candidate next generation
architectures for the RTK code base for a possible
migration effort in FY22. To date, however, there has been
no organized effort focused on working with Government
and Industry stakeholders, including those involved with
each of the above projects, on the longer term goal of
defining a unified, open, common, next generation,
autonomy software architecture for military RAS.

Under the AGVRA task request, however, the National
Advanced Mobility Consortium (NAMC) has completed
Phase 1 of an effort that might prove to be a significant first
step in the direction of unifying the two current, primary

ground architectures (RTK and AGR) and providing the
multiple, interrelated GVSC efforts described above with a
common next generation architecture that they can migrate
towards in accordance with each initiative’s own goals,
objectives, milestones, and timelines.

2. Scope
 The NAMC was tasked with defining a plan to generate

a prototype target system architecture (TSA) as a test case
for the recently released Autonomous Ground Vehicle
Reference Architecture (AGVRA) V1.0 framework. The
AGVRA framework provides guidelines, best practices,
and model-based architectural resources informed by
various systems in the autonomous ground vehicle domain.
These artifacts, as laid out in the AGVRA Concept
Description are intended to guide the development and
implementation of ground vehicle system architectures
from both a technical and a business practice perspective.

The NAMC formed a team of architecture subject matter
experts from among its members for the purpose of defining
a ground vehicle TSA, codenamed “SCION”, guided by
the recommendations in the AGVRA Concept Description
and AGVRA Version 1 Work Products. The NAMC team
set out to define the SCION architecture for a selected
robotic system and representative operational mission in
alignment with AGVRA principles. Driven to a significant
extent by factors critical to the Robotic Combat Vehicle
(RCV) program, the robot selected to serve as the target
system was a RCV(Light) surrogate vehicle and the
representative mission was route reconnaissance. Also
consistent with AGVRA guidelines, the process of defining
the prototype TSA involved analyzing existing autonomy
software architectures and considering how their
differences might be reconciled.

Initially, the primary purpose was to create an architecture
design based on the AGVRA principles so as to provide
effective and practical feedback to the AGVRA team,
including suggested improvements and recommendations
for improving the usefulness of AGVRA artifacts for
industry and Government stakeholders. As work
progressed, however, it became increasingly clear that the
draft SCION TSA in fact represented an early prototype of
a much broader, unified autonomy software architecture
applicable to a wide range of unmanned ground vehicles.
One that, with additional effort, might be readily matured
into a comprehensive, common, Government-owned open,
autonomy software architecture for military RAS that is:

• Robotic Technology Kernel (RTK)
• Autonomous Ground Re-supply (AGR)
• Combat Vehicle Robotics (CoVeR)
• Modular Autonomy and Robotic Software (MARS)
• Robotic Operating System – Military (ROS-M)
• Autonomous Ground Vehicle Reference Architecture

(AGVRA)

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 3 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

• Based on existing, open standards like IOP, common
middleware including ROS2, and an open
data/information architecture (UCS)

• Grounded in and part of the AGVRA ecosystem
• Derived from merging the two proven ground robotics

autonomy software architectures
(RTK and AGR)

Such an autonomy software architecture would accelerate
alignment to the overall ARMY modular open systems
approach (MOSA) by: (i) providing a transition path in the
form of an extended/enhanced common architecture that
each program can leverage as their local designs progress;
and (ii) delivering a de facto military RAS standard that
industry and Government alike can use to build their future
programs of record, IRAD efforts, and other plans around
(similar to the effect that IOP has had).

3. Autonomous Capability Requirements
Using the RCV(L) platform and route reconnaissance

mission as a basis, a series of high-level ground vehicle
autonomy and related requirements were derived to guide
the architecture design.

Autonomy Requirements
AUT-1: The platform must autonomously navigate to a
given global waypoint.

The resupply mission requires navigation to one or more
global waypoints along the path to its operator provided
goal position. The platform’s autonomy must provide an
autonomous waypoint navigation function, which uses the
platform’s current position and waypoint goal to plan and
execute motion to a globally referenced waypoint point.
AUT-2: The platform must detect and avoid obstacles
along its path of travel.

As the vehicle makes its way to a goal position, it must
consistently be planning a path through traversable space
towards the destination. As part of the planning process,
the vehicle must consider perceived information about the
environment to avoid getting stuck among the terrain or
damaging the platform.
AUT-3: The platform must accept and act upon
information from external sources.

Inputs provided to the platform by an operator, such as
keep-out areas, waypoints, stealth areas, etc. must be
considered by the autonomy as the mission is executed. In
addition, behaviors like formation following require
coordination with other manned or unmanned assets. These
parameters should be incorporated into the decision making

of the autonomous behaviors, and possibly in the decision
making as to which behaviors to execute at a given point in
the mission.
AUT-4: The platform must provide state and mission
feedback to external entities.

When an operator is interacting with the platform, the
platform must provide feedback to the operator as to the
system health and state, and the parameters and progress of
its commanded mission. The platform must also be able to
coordinate and share information with other manned or
unmanned assets.
AUT-5: The platform must implement safety measures
when operating autonomously.

When the platform is operating in an autonomous mode,
it must implement safety measures such as providing visual
feedback as a warning to the operator or any other
bystanders. This visual feedback is required for test and
evaluation and may be disabled as needed during field and
tactical operations.
AUT-6: If the platform determines it is unable to
complete its mission, it must execute a contingency plan.

As the vehicle attempts to navigate to a new goal position,
it may encounter a situation where it is unable to reach its
goal destination. In that case, the vehicle must fall back to
a contingency plan to allow for recovery.
AUT-7: The platform must autonomously retain and
navigate a previously traversed path.

In situations where the vehicle reaches a dead end or must
otherwise turn back from its planned course, it should use
previously executed motion to inform retro-traversal. If the
vehicle can record and re-trace its path, it can leverage the
previous efforts to detect and classify objects in the
environment and find a navigable path to the goal point.

Perception Requirements
PER-1: The platform must be able to determine
whether terrain is traversable.

Autonomous navigation through unstructured terrain
given in AUT-2 requires perception capabilities to
determine whether terrain is safe to traverse or not. The
platform requires the capability to process and combine
sensor streams and any a priori information to determine the
best path to navigate to its destination.
PER-2: The platform must maintain an estimate of its
pose within the environment throughout the mission.

Navigation to a globally referenced waypoint per AUT-1
requires that the platform must be able to track its own
motion through the environment and provide an estimate of

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 4 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

its pose in a global reference frame. The pose information
can also be used by other components, such as a world
modeling component to track the locations of obstacles as
the vehicle moves.

Sensing & Communication Requirements
SEN-1: The platform must support sensing the
environment around it.

The platform must be able to sense the environment
around it to perform autonomous navigation. This includes
being able to sense the ground, and any environmental
features that may make terrain unsafe to navigate or
traverse.
SEN-2: The platform must support sensing its position
in the environment.

The platform’s sensing must be able to support localizing
the vehicle within its environment, and within a global
reference frame.
SEN-3: The platform must communicate with an
external controller.

A route reconnaissance mission requires mission
parameters such as the formation members, a goal point,
any keep-out areas in the operating area, etc. The platform
may also be able to provide feedback about things like its
system health, current operating state, and available
autonomous missions/behaviors. The platform must
support a communication channel to an operator such that
the mission parameters and execution can be specified by
the operator, and platform feedback can be provided to the
operator.

Actuation Requirements
ACT-1: The platform must provide actuation to support
controlling the motion of the vehicle.

An unmanned platform has several degrees of freedom in
actuation, including at a minimum steering, throttle,
braking. Platforms may also include additional control
such as transmission gear selection, powerplant
enablement, differential locking, etc. These degrees of
freedom must be actuated and exposed to the autonomy
such that the desired trajectories can be translated into
actuation commands for the platform.
ACT-2: The platform must provide actuation to support
safe operation around humans.

In addition to the motion of the vehicle, the platform may
support additional actuation such as warning lights, audible
warnings, and motion of additional modular payloads.
These actuation modes must be exposed to and controllable
by the platform’s autonomy.

4. Architecture Requirements

Using the autonomous capability requirements described in
Section 3, the architectural requirements listed in Table 1
can be derived.

Table 1. Architectural Requirements Summary

Ref Requirement Derived
From

ARCH-1
The architecture must provide

platform localization in a global
frame.

PER-2

ARCH-2

The architecture must provide
communication paths to one or
more sensors to detect features
about its position and the
environment.

SEN-1

ARCH-3

The architecture must provide a
common communication
framework to support
communication with external
systems (OCU, other vehicles,
etc.)

SEN-3

ARCH-4

The architecture must provide a
common communication
framework for passing data
between components internal to
the architecture.

PER-1,
PER-2

ARCH-5

The architecture must provide a
consistent time base for data
synchronization between multiple
sensors, systems, and external
communications.

SEN-1,
SEN-2

ARCH-6

The architecture must provide a
perception system to process
sensor data from one or more
sensors and classify relevant
features in the environment

PER-1

ARCH-7
The architecture must provide

support for commanding the
motion of the vehicle.

ACT-1

ARCH-8

The architecture must provide
support for commanding visual
indicators and other safety
actuation.

ACT-2

ARCH-9

The architecture must provide a
framework for arbitrating
between multiple autonomous
behaviors that may run in
parallel.

AUT-1

ARCH-10

The architecture must
continuously monitor the health
of all subsystems and take
appropriate action in the case of
the failure of a subsystem.

AUT-5

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 5 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

ARCH-1 Global Localization
The platform is required to provide a consistent pose

(position, orientation, velocity) estimate in a globally
referenced (e.g. latitude/longitude) frame. This pose
estimate is required for functions such as navigating to a
fixed point, geo-referencing sensor data, position
coordination between multiple platforms, and closed-loop
control of speed and steering.
ARCH-2 Sensor Support

To complete the desired mission, the platform is likely to
need input from many sensors, such as actuator feedback,
LIDAR, camera, odometry, GPS, etc. The architecture
must provide enough connectivity and bandwidth to allow
all required sensors to be read and processed at their natural
rate. This may include support for Ethernet, Serial, CAN,
or other custom Inputs and Outputs (I/O) as needed.
ARCH-3 External Communication

Parts of the mission require accepting input from and
providing output to an external system, such as an OCU.
The architecture should provide a communication
framework and interface to communicate with external
systems. Per the AGVRA Concept Description, the chosen
framework should be an industry standard protocol to
enable interoperability with new and existing external
systems.
ARCH-4 Internal Communication

The internal components of the architecture will need to
communicate with each other to pass sensor data,
commands, perception results, current positions, etc. The
internal communication between components in the system
shall be consistent and well-defined. Per the AGVRA
Concept Description, the chose framework should be an
industry standard or widely used framework to enable
interoperability and modularity for components within the
system.
ARCH-5 Consistent Timebase

As data needs to be associated between more than one
acquisition source, and potentially more than one platform,
a consistent timebase is needed to accurately time-stamp
data. This includes samples from sensors, and data from
external sources.
ARCH-6 Perception Subsystem

The architecture should implement a perception system
that provides up-to-date information about the latest
perceived state of the environment for autonomous decision
making. This perception framework should handle various
sensor input streams and identify features required for
autonomous behaviors such as terrain traversability, safe
and unsafe areas of travel, etc.

ARCH-7 Vehicle Motion
The platform must be controlled by the autonomy to

traverse through difficult to navigate terrain. The
architecture must provide an interface to the actuation on
the platform to allow the autonomy to execute this low-
level vehicle control.
ARCH-8 Safety Indicators

When the platform is operating autonomously, it must
indicate it is in an autonomous mode in a way that operators
and bystanders in the immediate area can use to stay clear
of the vehicle. The architecture must provide a way to
expose this type of indication to the autonomy.
ARCH-9 Autonomous Behaviors

Due to the diverse needs of the mission profile, multiple
independent behaviors will be required to accomplish
individual autonomous tasks (e.g. plan to waypoint,
maintain a formation, retro-traverse a previously traveled
path, hold at a goal point, etc.) These behaviors should be
isolated and implemented separately to support re-use of the
behaviors in other mission profiles, and extension of the
platform for additional missions. The architecture must
provide a way to execute and arbitrate between multiple
behaviors running in parallel.
ARCH-10 System Health

To ensure safe operation, the architecture must monitor
the critical components of the system, such as motion
execution, sensor health, connectivity between
components, etc. When a failure occurs in a component of
the system, the architecture must take appropriate action
depending on the impact of the failure on the overall
mission. This may include disabling a sensor from the
perception pipeline if it is found to be faulty, coming to a
stop if the vehicle is no longer able to steer or detect
obstacles, or retro-traversing the previously traversed path
until the error can be reported to an operator.

5. Prototype SCION Architecture
The existing architectures and standards used by GVSC

and outlined by AGVRA provide an excellent baseline for
a next generation, autonomy software architecture that
meets the behavior requirements outlined in Section 3. The
prototype SCION architecture, described below, leverages
those offerings and extends on-going efforts endorsed by
GVSC into a single, unified design that pulls from the best-
in-breed of existing architectures, including Autonomous
Ground Resupply (AGR) and the Robotic Technology
Kernel (RTK), and proven communications protocols,
including IOP/JAUS, UCS, DDS, and ROS2.

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 6 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

5.1 System Decomposition
The overall system was first decomposed into constituent

elements to specify the scope and boundaries of the
autonomy software architecture. This modular approach
also promotes re-use of existing system design approaches,
such as the IOP Instantiation mechanism which focuses on
standards-compliant interfaces, while emphasizing
platform components that need additional specification not
generally covered by the IOP.

Error! Reference source not found. shows a r
epresentative system decomposition into a user interface,
high-level vehicle control, and low-level hardware control
layer taken from the Autonomous Ground Resupply
program.

Figure 1. High Level Architecture Decomposition

• The Warfighter Machine Interface (WMI) is a particular
application used across a number of US Army CCDC Ground
Vehicle Systems Center (GVSC) programs. Generally, however,
this top level component is meant to represent a user interface
by which the warfighter or other operator interacts with the
system.

• The Autonomy Kit (A-Kit) represents the “brain” of the
platform that enables the intelligent behaviors identified in
Section 3. The A-Kit generally focuses on platform mobility,
with emphasis on path planners, obstacle detection/obstacle
avoidance (ODOA), localization, etc.

• The Drive-By-Wire Kit (B-Kit) encapsulates the low level
interfaces into the hardware of the platform. Because these
interfaces can often be proprietary or include proprietary
extensions to common vehicle standards like CAN or J1939, the
B-Kit abstracts away some of those particulars, offering a
common and consistent interface regardless of underlying
platform.

The goal of the prototype SCION architecture is to define
the interfaces to and from the A-Kit, while also
decomposing the A-Kit into notional constituent
components and interfaces.

Figure 2 shows the use of IOP between the different layers
of the architecture. This diagram also proposes the use of
IOP (and by extension, JAUS) for payloads such as
manipulators, pan/tilt systems, UAVs, and other external
entities. Sensors internal to the A-Kit, such as cameras,
GPS, and LIDARs are intentionally absent from this
decomposition. Because of the need for tight integration
with the world model and the rest of the A-Kit, these
interfaces are considered part of the A-Kit and will be
described in the next section. Sensors external to the A-Kit,
such as those provided by payloads, are expected to be
managed by the payload module and made available to the
A-Kit via IOP.

Note that the external client listed in Figure 2 shows a
generic “controller”, generally taken to mean any user
interface that a human operator interacts with. However,
this is not limited to traditional one-controller/one-platform
interfaces like the WMI. By using interoperable protocols
like the IOP, more complex external clients, such as but not
limited to multi-agent planning systems and AI-based
scheduling systems, are supported natively.

Figure 2. Top Level System Decomposition

5.2 A-Kit Decomposition
Based on the architecture requirements defined in Section 4,

the A-Kit is expected to support several top- level elements
that provide specific capabilities. Figure 3 shows an initial
decomposition into twelve modules.

Figure 3. Initial A-Kit Decomposition

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 7 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

The intended overall functionality of each component is as
follows:

• Sensors: Interfaces with sensing hardware, such as
cameras, LIDARs, GPS, etc.

• Object Detection: Extracts features and other
information from the raw sensor data

• Localization: Provides a representation of the platform
location by fusing data from multiple sensors, such as
GPS, INS, odometers, etc.

• World Model: Uses perception and localization to
convert sensor data to a representation of the
environment, often using cost maps or similar
representations.

• Autonomous Behaviors: Manages the general state and
operating mode of the A-Kit, choosing between multiple
and potential competing objectives.

• Planning: Provides vehicle motion planners based on the
current objectives.

• Motion Executor: Interfaces with the B-Kit to provide
low-level motion control.

• Comms Module: Where necessary, bridges between
internal and external protocols used by the A-Kit.

• System Health: Provides a system monitor that
measuring the current state and health of the system,
providing feedback to the human operator and other
components within the A-Kit.

• Safety Checker: Monitors and approves the commands
generated by the planners to ensure safe operation of the
platform.

The notional decomposition proposed in Figure 3 follows
the 4D/RCS design paradigm of sense-interpret-act and
demonstrates strong overlap with the AGR and RTK
architectures. The overall goal is to unify terminology
across the two programs into a single top-level architectural
representation, based on lessons-learned while following
guidance provided by AGVRA. Subsequent sections
provide further detail of each component and sub-
component in terms of expected function within the system,
the high-level data items that flow between those elements,
and specify the message definitions that comprise the inputs
and outputs.

5.3 Architecture Components
Figure 4 provides an overview of the proposed, top-level,

A-Kit, SCION architecture. Note that the arrows represent
messaging are intended to show only key data exchanges
for simplicity.

In a complete implementation, the exchange of information
is expected to be significantly more complex between all
components.

Figure 4. Proposed new architecture, high-level diagram

Sensor Components
Autonomy systems generally use a suite of sensor

technologies, including LIDAR, cameras (2D and 3D),
GPS, IMU, and radar. These devices frequently have their
own unique protocols for communication and control. The
goal of Sensor Components is to abstract these unique
needs into a common set of messages and a consistent
representation of the output data. In a sense, the Sensor
Components act as a device driver, translating between the
needs of a particular sensor and instead exposing a common
interface to the rest of the autonomy stack. Note, however,
that the output data between sensor types can vary widely;
the data representation of a 2D camera has different
messaging needs than the output of a point cloud from a
LIDAR. Therefore, the architecture must support several
different output types based on the sensor technology
selected for any particular implementation.

Note that all sensor data must be timestamped to prevent

relying on old or stale data. Further, the timestamp must be
common across all computing platforms within the A-Kit,
using a synchronized timebase. Implementations are
encouraged to use existing clock synchronization
approaches such as an NTP time server or similar.

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 8 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

Perception Components

Perception potentially combines the data from multiple
Sensor Components along with vehicle position and
orientation information from Localization into a common
understanding of the environment. This may include
labeling data, extracting features such as traversable or non-
traversable obstacles, or identifying tracks for vehicles and
pedestrians. Further, Perception may be required to
transform the raw sensor data from Sensor Components
into a common coordinate frame, using either a global,
relative, or vehicle-centric frame of reference.

Note that, like Sensing Components, one or more

Perception Components may exist within an
implementation. These Components may vary in terms of
their capabilities. For example, one Perception Component
may be able to extract human figures and provide
predictions as to future positions in space based on 2D
camera imagery, while another might use LIDAR point
clouds to identify the ground plane and slope of local
terrain. The architecture is capable of supporting these
disparate functionalities so long as each uses the common
set of specified input and output messages.

Perception Components provide additional processing
and analysis on the raw data produced by Sensing
Components before being consumed by the World Model.
As with the sensor data, the specific nature of the messaging
inputs and outputs is highly dependent on the sensor
modalities and the nature of the feature extraction.

Localization Component

The Localization Component is responsible for estimating
and representing the platforms position, orientation,
velocity and acceleration in three-dimensional space.
Generally, some combination of GPS, IMU, and wheel
encoders is used, but additional sensing methods are
possible and must not be limited by the architecture. As a
result, the inputs to the Localization Component are not
defined. The implementation might use Sensor
Components that wrap hardware devices or communicate
with those devices using their native protocols.

Generally, a global frame of reference, such as lat-lon,

UTM, or ECEF using a WGS84 datum, is the most portable
between vehicles and the OCU. However, these global
frames are generally not useful for path planning as they do
not support a continuous flat plane.

To that end, the localization must use a minimum of three
frames: 1) a global frame completely unique across the
surface of the Earth, such as lat-long, ECEF, or UTM with
zone information; 2) a relative Cartesian frame that is
continuous and suitable for computing the relative position
of objects in the vicinity (generally under 20 kilometers);
and 3) a vehicle-centric frame suitable for vehicle-relative
information such as velocity and acceleration. The
relationships between these three frames are tracked over
time, such that it is always possible to transform coordinates
between all three frames.

World Model Component

The World Model Component converts data from
Perception and Localization into cost maps for
consumption by Planner Components. Generally, an
implementation is expected to have only a single World
Model Component, which may combine data from multiple
Perception Components and serve multiple Planner and
Autonomy Components.

The goal of World Model is very similar to that of
Perception: to interpret and provide information about the
environment around the vehicle. However, while
Perception is generally based on information only from
current time, e.g. the most recent sensor data, the World
Model maintains some history over time. This allows the
World Model to “remember” obstacles that have gone out
of the sensor field of view, as well as provide information
about the confidence level of any obstacles detected.

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 9 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

The World Model uses inputs from the Localization and
Perception Components to form an understanding of the
world, while taking requests for specific areas and
resolutions from costmap clients. Note that the World
Model must support multiple clients simultaneously,
potentially providing different maps to different clients
based on the topic name. Further, each client can configure
multiple cost maps requests, varying in size, resolution, or
frequency.

Since one-and-only-one World Model Component is
expected to exist within the A-Kit, the Component uses a
ROS “service” approach based on a request/response
paradigm. The World Model client initiates the transaction
by sending a CostMapRequest with applicable data such as
size and resolution, while the World Model responds using
the same CostMapRequest structure but populating the
“topic” field. The client can then subscribe to that topic to
receive the CostMap messages.

Autonomy Management and Arbitration

The Behavior, Assignment, Planner, and Motion
execution systems each employ the same Manager/Arbiter
framework, largely derived from the AGR architecture. At
each level, an overall Manager controls the activation of
one or more individual components, based on commands
from a higher level in the autonomy stack.

At each layer, individual components register themselves
at runtime with the component manager by publishing a
status message to a pre-defined topic. This status message
contains information about the component such as its name,
a unique identifier, and feedback as to whether it is
activated or has completed its task. The component
manager uses these status messages to monitor the health of
individual components. If a component does not respond,
or fails to reflect the commanded activation state, the
component manager can take action to disable or report the
component.

The component arbiter is responsible for validating the
output of one or more components based on the component
manager’s activation status, and individual component
status. These validated outputs are passed to the next layer
in the autonomy stack.

The Autonomy is broken up into four layers, or systems,
each implementing the same Management/Arbiter
framework. First is the Behavior Management System,
which is responsible for setting the high-level state of the
system. The next is the Assignment Management system,
which supports execution of one or more autonomous tasks
in support of the commanded behavior. Following that is
the Planner Management system, which accepts path or
waypoint commands from Assignments and generates low
level motion primitives. Finally, the Motion Management
Subsystem accepts motion primitives from a planner and
translates them to low-level control messages for direct
execution by the vehicle.

This layered structure is based on the 4D/RCS approach
of multi-tiered autonomy and increasing resolution and
allows for each tier to operate based on specific constraints.
For example, the output of the Motion Executor
Components is often published at a faster rate than the
Planner Components to support low-level controller
feedback and watchdog functions. Additionally, the run-
time nature of component discovery and activation allows
for new components to be added to the system at multiple
layers without the need to change code in the manager and
arbiter components.

Behavior Management System
The Behavior Management System represents the top-level

autonomy of the A-Kit, managing the overall state and
behavior (autonomous or otherwise) of the system. This
component receives state change requests from the OCU and
selects the active behavior based on the registered Behaviors,
as well as the current health of the system generated by the
Health Monitor and Diagnostics Component. It is responsible
for safely transitioning between behaviors, and for arbitrating
the output of behaviors. It is made up of three distinct
components: the Behavior Manager, the Behavior Arbiter, and
a collection of one or more behavior modules.

The Behavior Manager accepts inputs from external sources,
such as commands from an operator, to manage the top-level
state of the system e.g. teleoperation versus waypoint
following versus leader/follower. Each top-level state
corresponds to a behavior module. When a top-level state is
commanded, the behavior manager evaluates the system state
and diagnostics information from the health monitor
component to verify that the interlocks are met to activate the
behavior and change the top-level state. When the interlocks

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 10 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

are successfully met, the Behavior Manager sends an
activation command to the behavior.

The Behavior Arbiter acts as an intermediary between
individual behaviors and the downstream assignment
manager. The Behavior Arbiter receives behavior activation
information from the Behavior Manager, and assignment
activation requests from all running behaviors. The output
from the activated behavior is re-published on a known topic
to the Assignment Manager.

Individual behaviors all implement the same basic interfaces
for integration into the Behavior Management System. They
each publish a status message at a fixed rate which acts both
as a watchdog and as feedback for the Behavior Manager as to
the operational state of the behavior. Behaviors all subscribe
to the Behavior Manager’s activation topic and activate
themselves when indicated. Finally, behaviors publish
activation requests for Assignments that implement the
behavior. These commands are verified and re-published by
the Behavior Arbiter. Multiple behaviors may register with
the Behavior Management System, but only one behavior can
be active at a time.

Although the Scion architecture defines the coordination
within the Behavior Management System, it is not intended to
restrict the capabilities of any individual behavior module.
This modular approach allows for a wide range of behaviors
from simple teleoperation to bleeding-edge autonomous
agents and AI-based intelligent reasoners. This flexibility and
future growth is one of the core benefits of the modular,
layered design.

Assignment Management System
The Assignment Management system controls the

activation, execution, and arbitration of outputs from
individual Assignment modules. Assignments are
components that implement autonomous functions in support
of a high-level behavior. For example, a Convoy behavior
may request activation of a Leader assignment for a convoy
leader which collects the trail traveled by the vehicle and
transmits it to other vehicles. At the same time, it may also
request activation of a Convoy assignment on all vehicles to
facilitate inter-vehicle position updates to all members of a
convoy.

Assignments register themselves with an Assignment
Manager at startup, and behaviors request the activation of one
or more assignments depending on the high-level mission
goals. Behaviors may sequence the requests for activation/de-
activation of assignments to perform complex or multi-stage
behaviors.

The Assignment Arbiter monitors the assignment selection
state, and when multiple assignments are active, arbitrates
between them to determine which assignment outputs to
forward to the Planner Management System. Assignments

request the activation of a planner in the navigation
management system and provide the planner with an objective
point or path to achieve.

Individual assignments may also send and receive messages
to other subsystems, such as the world model or inter-vehicle
communications.

The Assignment Management System has the same structure
as the Behavior Management System: An Assignment
Manager and Assignment Arbiter manage the activation and
output of one or more assignment modules.

The Assignment Manager subscribes to activation requests
from the Behavior Manager and uses those requests to enable
and disable the execution of assignments. Unlike the Behavior
Management system, one or more assignments may execute in
parallel. This gives rise to complex behaviors, as Assignments
can share and coordinate information with each other, as well
as with other elements of the system. Assignments that control
vehicle motion publish at least two messages: a path or goal
objective for a planner, and an activation request for a planner
to act on that objective. Assignments that perform tasks that
do not affect vehicle movement (e.g. inter-vehicle
communication, or recording paths for followers or retro-
traversal,) do not have to publish either of those messages.

The Assignment Arbiter accepts the output of individual
assignment modules and re-publishes the path or goal
objective of the assignment with the highest execution priority
to the Planner Manager component.

Planner Management System
Planner Components, or planners, provide increasing

resolution to the goals published by Assignments. Planners
must determine a navigable path to a commanded destination,
avoiding both moving and stationary obstacles as reported by
the World Model.

An implementation may contain multiple planners, each with
its own unique application. For example, some planners may
operate better in open-world conditions while others specialize
in road following. Since multiple planners may be present, a
single Planner Manager is responsible for selecting which
planner is active at any given time. This is like the Behavior
Management mechanism used to select and activate its
different Behavior Modules.

In addition to the target trajectory, an active planner must
also generate a “safe harbor” plan. For small slow vehicles,
this may simply be a command to immediately stop using zero
velocity. For larger, more complex platforms, the safe harbor
is a trajectory that will bring the vehicle to a controlled stop
and quickly and safely as possible such as using the first points
of the commanded path to decelerate or continuing along the
current heading until stopped. The system is never expected
to execute the safe harbor plan, but it may be needed if failures
or fault conditions arise.

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 11 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

The Planner Management System has the same structure as
the Behavior Management System: A Planner Manager and a
Planner Arbiter manage the activation and output of one or
more Planner modules.

The Planner Manager subscribes to activation requests from
the Assignment Manager and uses those requests to enable and
disable the execution of Planner modules. Only one Planner
module may be active at a time. Planner modules all accept a
goal point or path, but each planner must define the semantics
of that input (e.g. does the planner plan to a point or a path,
should the desired path lie along the vehicle’s current
position). It is expected that assignments select a planner with
the needed capabilities to execute the desired motion and
provide semantically correct inputs as defined by that planner.

Planners are responsible for requesting the activation of an
appropriate motion executor to execute the desired path. Each
planner should use the available world model information
from the World Model Component (e.g. costmaps) to plan a
navigable path. Planners should each request an appropriate
costmap from the World Model component, either during
initialization or when activated.

The Planner Arbiter accepts motion executor activation
requests, path commands, and safe harbor paths from all
planner modules and re-publishes output from the currently
activated planner to the Motion Execution system.

Motion Executor Management System
The Motion Executor (ME) Components are the lowest

levels of control within the A-Kit, converting the navigable
plans from the active Planner Component to actionable
commands to the B-Kit. Motion Executor output is based on
motion primitives, such as commanded velocity and curvature
(or steering commands) that are easily executed by the B-Kit.

Like the Planner Components, multiple Motion Executors
can exist in a single implementation. A single Motion Executor
Manager selects and activates a specific ME based on the
autonomy mode and the capabilities required. Note that this
structure is largely for future proofing, as generally systems
will have only a single ME to convert commanded plans to
motion primitives based on the capabilities of the vehicle.

In addition to decomposing the active plan into motion
primitives, the active Motion Executor must also forward the
safe harbor plan. This plan is passed through unaltered; hence,
the B-Kit itself must be capable of executing the safe harbor
plan in the event it becomes necessary.

The Motion Executor Management System has the same
structure as the Behavior Management System: A Motion
Executor Manager and a Motion Executor Arbiter manage the
activation and output of one or more Motion Executor
modules.

The Motion Executor Manager requests the activation of a
single Motion Executor Module based on the request from the
Planner Arbiter. Only one motion executor can be active at a
time.

Each Motion Executor module is responsible for translating
an input path into a set of primitive commands for the
underlying platform to execute. The exact format of these
motion primitives may vary depending on the capabilities of
the underlying platform controller. Motion Executors are also
responsible for forwarding a Safe Harbor command to the
underlying platform.

The Motion Executor Arbiter accepts outputs from each
Motion Executor and forwards the commands from the active
Motion Executor to the underlying platform.

Communications Component

Data exchange, whether OCU-to-vehicle, vehicle-to-
vehicle, or A-Kit to B-Kit, is expected to use IOP. Internal
to the A-Kit, however, messaging is based on ROS2. The
Comms Model Component, sometimes called an IOP-to-
ROS bridge, converts between these two protocols. As such
it becomes the gatekeeper for information flowing into and
out of the A-Kit.

 Since the Comms Module Component is a translator and
does not generate or consume messages on its own, specific
inputs and outputs are not enumerated. Rather, the breadth
of the bridge is based on the message set of the A-Kit itself
as well as the particular IOP Instantiation defined for the
mission. As such, the input and output messages consist of
any messages specified by the IOP Instantiation for the
specific project or program realizing this architecture, and
the ROS messages defined therein.

Health Monitor and Diagnostics Component
The Health Monitor and Diagnostics Component

monitors the overall health of the system. Consequently, it
can be configured to monitor the message traffic from
virtually any component in the A-Kit and detect problems
that prevent safe and normal operation. Any such problems
are reported out to the OCU for display to the human
operator, and also reported to the Behavior Manager to
properly manage any necessary state transitions associated
with the error.

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,
Thomasmeyer, et al

Page 12 of 12

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251

AGR in particular uses a sophisticated scripting language

to configure the specific health checks and resulting
behavior of the Component. While such an approach leans
more towards implementation than architecture, it is noted
that such an approach offers significant flexibility at run-
time without the need to modify and recompile code. As a
result, implementations are encouraged to consider this
solution.

The capabilities of the Health Monitor are largely
dependent on the specific program, vehicle, and common
failure modes. Because of that, the design constraints
specified by this architecture are minimal. The
implementation may subscribe to any message within the
architecture and monitor for warning and error conditions.

Safety Checker Component

The Safety Checker is an optional component for safety
critical platforms and programs, generally involving larger
and/or faster vehicles with significant potential for human
injuries or fatalities in the event of a failure. One and only
one Safety Checker Component is expected per vehicle.

The Safety Checker Component runs on dedicated

hardware, and serves as the final gatekeeper between the
Motion Executor Components and the B-Kit. In the event a
failure or unsafe condition is detected, the Safety Checker
can alter the commanded path or force execution of the safe
harbor plan. It is expected that the Safety Checker
implementation would be certified by relevant DoD
authorities.

The Safety Checker is largely a pass-through component,
providing a safety-critical validation of the Motion
Executor commands between it is passed to the B-Kit for
execution on the platform. Consequently, the inputs and
outputs are the same message structure; however, the
message data may be modified by the Safety Checker if an
error condition is detected. Note that the publication rate is
expected to match that of the incoming message rate.
Further, the Safety Checker must not cause significant
latency of the command stream.

6. CONCLUSION / PATH FORWARD
 The project to develop an initial design for a common,
open, Government-owned, autonomy software architecture
has resulted in a promising prototype with the potential to
provide the flexibility needed by the both the Government
and industry RDT&E communities to leverage reusable
software and more rapidly innovate new capabilities; while
ensuring the discipline and enabling the modularity
required to develop RDT&E software structured to meet the
software safety, cybersecurity, upgradeability, and other
needs of RAS programs of record. The next steps for further
advancing the prototype SCION architecture include the
following:

Ø Leveraging the AGVRA libraries and meta-models:
capture the system requirements in SysML, complete a
detailed design of the SCION architecture, and capture
the detailed design in SysML

Ø Defining, capturing, and modeling the interfaces and
data flow among the components in the SCION
architecture, using the AGVRA Data Interoperability
Architecture (DIA) artifacts and meta-models

Ø Developing a ROS2 interface definition set for the
SCION architecture leveraging the newly created
SysML models and inter-component data definitions

Ø Determining the vehicle and sensor characteristics of a
target RAS platform and creating an AGVRA physical
model viewpoint of the system

Ø Investigating and analyzing how elements of other
autonomy software architectures might be incorporated
into future versions of the SCION architecture and
develop a long-term roadmap

Ø Investigating whether and how the RTK packages
converted to ROS2 under the MARS project might be
subsequently migrated to the SCION architecture

