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ABSTRACT 
 

This paper reports on a prototype project to develop and mature a common, open, comprehensive, collaboratively 
developed, Government-owned, autonomy software architecture for ground robotic and autonomous systems (RAS).   
The prototype architecture, codenamed “SCION” promises the flexibility needed by the both the Government and 
industry research, development, testing, and engineering (RDT&E) communities to leverage reusable software and more 
rapidly innovate new capabilities; while ensuring the discipline and enabling the modularity required to develop 
RDT&E software structured to meet the software safety, cybersecurity, upgradeability, and other needs of RAS programs 
of record.  Accordingly, program offices can adopt an acquisition strategy that requires compatibility with the de facto, 
military RAS standard, SCION architecture, while providing OEMs with baseline, SCION-compatible, GFE software 
(e.g. a future version of RTK).  Such a strategy encourages optimal innovation, increases competition, provides for 
greater IP flexibility, and incentivizes OEMs to propose solutions based on the GFE software, while ensuring that the 
responsibility and accountability for the software remain with the OEM. 
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1. INTRODUCTION 
 As the United States ARMY CCDC Ground Vehicle 

Systems Center (GVSC) endeavors to achieve the ARMY 
Robotics and Autonomous Systems (RAS) strategic 
objectives, multiple simultaneous programs have emerged, 
each with a different purpose, scope and timeframe. 
Programs and projects related to offering effective 
autonomous robotics solutions to the warfighter include: 

The varying developmental timeframes and scope of each 
of the programs mentioned above poses unique challenges, 
including those related to differences and deviations from 
program to program in the software architectures.  At the 
same time, a growing topic of discussion among the many 
Army organizations responsible for the development, 
fielding, and maintenance of unmanned ground vehicles is 
the need for an open, common, and modular software 
architecture (ideally aligned with the emerging AGVRA 
framework) that would accelerate the development and 
eventual fielding of autonomous tactical behaviors for 
military RAS.  

As part of their next phase plans, several of the above 
named projects are beginning to take preliminary steps to 
reconcile the differences in the current software 
architectures.  For example, the plans for AGR increment 3 
include an effort to merge elements of the RTK architecture 
into the existing ROS1 based, AGR architecture.  And the 
MARS project proposes in year 2 to undertake a study to 
identify one or more candidate next generation 
architectures for the RTK code base for a possible 
migration effort in FY22.  To date, however, there has been 
no organized effort focused on working with Government 
and Industry stakeholders, including those involved with 
each of the above projects, on the longer term goal of 
defining a unified, open, common, next generation, 
autonomy software architecture for military RAS.  

Under the AGVRA task request, however, the National 
Advanced Mobility Consortium (NAMC) has completed 
Phase 1 of an effort that might prove to be a significant first 
step in the direction of unifying the two current, primary 

ground architectures (RTK and AGR) and providing the 
multiple, interrelated GVSC efforts described above with a 
common next generation architecture that they can migrate 
towards in accordance with each initiative’s own goals, 
objectives, milestones, and timelines. 

2. Scope 
  The NAMC was tasked with defining a plan to generate 

a prototype target system architecture (TSA) as a test case 
for the recently released Autonomous Ground Vehicle 
Reference Architecture (AGVRA) V1.0 framework.  The 
AGVRA framework provides guidelines, best practices, 
and model-based architectural resources informed by 
various systems in the autonomous ground vehicle domain.  
These artifacts, as laid out in the AGVRA Concept 
Description are intended to guide the development and 
implementation of ground vehicle system architectures 
from both a technical and a business practice perspective. 

The NAMC formed a team of architecture subject matter 
experts from among its members for the purpose of defining 
a ground vehicle TSA, codenamed “SCION”, guided by 
the recommendations in the AGVRA Concept Description 
and AGVRA Version 1 Work Products.  The NAMC team 
set out to define the SCION architecture for a selected 
robotic system and representative operational mission in 
alignment with AGVRA principles.  Driven to a significant 
extent by factors critical to the Robotic Combat Vehicle 
(RCV) program, the robot selected to serve as the target 
system was a RCV(Light) surrogate vehicle and the 
representative mission was route reconnaissance.  Also 
consistent with AGVRA guidelines, the process of defining 
the prototype TSA involved analyzing existing autonomy 
software architectures and considering how their 
differences might be reconciled. 

Initially, the primary purpose was to create an architecture 
design based on the AGVRA principles so as to provide 
effective and practical feedback to the AGVRA team, 
including suggested improvements and recommendations 
for improving the usefulness of AGVRA artifacts for 
industry and Government stakeholders.  As work 
progressed, however, it became increasingly clear that the 
draft SCION TSA in fact represented an early prototype of 
a much broader, unified autonomy software architecture 
applicable to a wide range of unmanned ground vehicles.  
One that, with additional effort, might be readily matured 
into a comprehensive, common, Government-owned open, 
autonomy software architecture for military RAS that is: 

• Robotic Technology Kernel (RTK)  
• Autonomous Ground Re-supply (AGR)  
• Combat Vehicle Robotics (CoVeR)  
• Modular Autonomy and Robotic Software (MARS)  
• Robotic Operating System – Military (ROS-M)  
• Autonomous Ground Vehicle Reference Architecture 

(AGVRA) 
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• Based on existing, open standards like IOP, common 
middleware including ROS2, and an open 
data/information architecture (UCS) 

• Grounded in and part of the AGVRA ecosystem 
• Derived from merging the two proven ground robotics 

autonomy software architectures  
(RTK and AGR)  

Such an autonomy software architecture would accelerate 
alignment to the overall ARMY modular open systems 
approach (MOSA) by: (i) providing a transition path in the 
form of an extended/enhanced common architecture that 
each program can leverage as their local designs progress; 
and (ii) delivering a de facto military RAS standard that 
industry and Government alike can use to build their future 
programs of record, IRAD efforts, and other plans around 
(similar to the effect that IOP has had). 

3. Autonomous Capability Requirements 
Using the RCV(L) platform and route reconnaissance 

mission as a basis, a series of high-level ground vehicle 
autonomy and related requirements were derived to guide 
the architecture design. 

Autonomy Requirements 
AUT-1: The platform must autonomously navigate to a 
given global waypoint. 

The resupply mission requires navigation to one or more 
global waypoints along the path to its operator provided 
goal position.  The platform’s autonomy must provide an 
autonomous waypoint navigation function, which uses the 
platform’s current position and waypoint goal to plan and 
execute motion to a globally referenced waypoint point. 
AUT-2: The platform must detect and avoid obstacles 
along its path of travel. 

As the vehicle makes its way to a goal position, it must 
consistently be planning a path through traversable space 
towards the destination.  As part of the planning process, 
the vehicle must consider perceived information about the 
environment to avoid getting stuck among the terrain or 
damaging the platform. 
AUT-3: The platform must accept and act upon 
information from external sources. 

Inputs provided to the platform by an operator, such as 
keep-out areas, waypoints, stealth areas, etc. must be 
considered by the autonomy as the mission is executed.  In 
addition, behaviors like formation following require 
coordination with other manned or unmanned assets. These 
parameters should be incorporated into the decision making 

of the autonomous behaviors, and possibly in the decision 
making as to which behaviors to execute at a given point in 
the mission. 
AUT-4: The platform must provide state and mission 
feedback to external entities. 

When an operator is interacting with the platform, the 
platform must provide feedback to the operator as to the 
system health and state, and the parameters and progress of 
its commanded mission. The platform must also be able to 
coordinate and share information with other manned or 
unmanned assets. 
AUT-5: The platform must implement safety measures 
when operating autonomously. 

When the platform is operating in an autonomous mode, 
it must implement safety measures such as providing visual 
feedback as a warning to the operator or any other 
bystanders.  This visual feedback is required for test and 
evaluation and may be disabled as needed during field and 
tactical operations. 
AUT-6: If the platform determines it is unable to 
complete its mission, it must execute a contingency plan. 

As the vehicle attempts to navigate to a new goal position, 
it may encounter a situation where it is unable to reach its 
goal destination.  In that case, the vehicle must fall back to 
a contingency plan to allow for recovery. 
AUT-7: The platform must autonomously retain and 
navigate a previously traversed path. 

In situations where the vehicle reaches a dead end or must 
otherwise turn back from its planned course, it should use 
previously executed motion to inform retro-traversal.  If the 
vehicle can record and re-trace its path, it can leverage the 
previous efforts to detect and classify objects in the 
environment and find a navigable path to the goal point. 

Perception Requirements 
PER-1: The platform must be able to determine 
whether terrain is traversable. 

Autonomous navigation through unstructured terrain 
given in AUT-2 requires perception capabilities to 
determine whether terrain is safe to traverse or not.  The 
platform requires the capability to process and combine 
sensor streams and any a priori information to determine the 
best path to navigate to its destination. 
PER-2: The platform must maintain an estimate of its 
pose within the environment throughout the mission. 

Navigation to a globally referenced waypoint per AUT-1 
requires that the platform must be able to track its own 
motion through the environment and provide an estimate of 



 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,  
Thomasmeyer, et al 

 

Page 4 of 12 

 
DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251 

its pose in a global reference frame.  The pose information 
can also be used by other components, such as a world 
modeling component to track the locations of obstacles as 
the vehicle moves. 

Sensing & Communication  Requirements 
SEN-1: The platform must support sensing the 
environment around it.  

The platform must be able to sense the environment 
around it to perform autonomous navigation.  This includes 
being able to sense the ground, and any environmental 
features that may make terrain unsafe to navigate or 
traverse. 
SEN-2: The platform must support sensing its position 
in the environment.  

The platform’s sensing must be able to support localizing 
the vehicle within its environment, and within a global 
reference frame. 
SEN-3: The platform must communicate with an 
external controller. 

A route reconnaissance mission requires mission 
parameters such as the formation members, a goal point, 
any keep-out areas in the operating area, etc.  The platform 
may also be able to provide feedback about things like its 
system health, current operating state, and available 
autonomous missions/behaviors. The platform must 
support a communication channel to an operator such that 
the mission parameters and execution can be specified by 
the operator, and platform feedback can be provided to the 
operator. 

Actuation  Requirements 
ACT-1: The platform must provide actuation to support 
controlling the motion of the vehicle. 

An unmanned platform has several degrees of freedom in 
actuation, including at a minimum steering, throttle, 
braking.  Platforms may also include additional control 
such as transmission gear selection, powerplant 
enablement, differential locking, etc.  These degrees of 
freedom must be actuated and exposed to the autonomy 
such that the desired trajectories can be translated into 
actuation commands for the platform. 
ACT-2: The platform must provide actuation to support 
safe operation around humans. 

In addition to the motion of the vehicle, the platform may 
support additional actuation such as warning lights, audible 
warnings, and motion of additional modular payloads.  
These actuation modes must be exposed to and controllable 
by the platform’s autonomy.  

4. Architecture Requirements 
 

Using the autonomous capability requirements described in 
Section 3, the architectural requirements listed in Table 1 
can be derived.  

 
Table 1. Architectural Requirements Summary 

Ref Requirement Derived 
From 

ARCH-1 
The architecture must provide 

platform localization in a global 
frame. 

PER-2 

ARCH-2 

The architecture must provide 
communication paths to one or 
more sensors to detect features 
about its position and the 
environment. 

SEN-1 

ARCH-3 

The architecture must provide a 
common communication 
framework to support 
communication with external 
systems (OCU, other vehicles, 
etc.) 

SEN-3 

ARCH-4 

The architecture must provide a 
common communication 
framework for passing data 
between components internal to 
the architecture. 

PER-1, 
PER-2 

ARCH-5 

The architecture must provide a 
consistent time base for data 
synchronization between multiple 
sensors, systems, and external 
communications. 

SEN-1, 
SEN-2 

ARCH-6 

The architecture must provide a 
perception system to process 
sensor data from one or more 
sensors and classify relevant 
features in the environment 

PER-1 

ARCH-7 
The architecture must provide 

support for commanding the 
motion of the vehicle.  

ACT-1 

ARCH-8 

The architecture must provide 
support for commanding visual 
indicators and other safety 
actuation. 

ACT-2 

ARCH-9 

The architecture must provide a 
framework for arbitrating 
between multiple autonomous 
behaviors that may run in 
parallel. 

AUT-1 

ARCH-10 

The architecture must 
continuously monitor the health 
of all subsystems and take 
appropriate action in the case of 
the failure of a subsystem. 

AUT-5 
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ARCH-1 Global Localization 
The platform is required to provide a consistent pose 

(position, orientation, velocity) estimate in a globally 
referenced (e.g. latitude/longitude) frame.  This pose 
estimate is required for functions such as navigating to a 
fixed point, geo-referencing sensor data, position 
coordination between multiple platforms, and closed-loop 
control of speed and steering. 
ARCH-2 Sensor Support 

To complete the desired mission, the platform is likely to 
need input from many sensors, such as actuator feedback, 
LIDAR, camera, odometry, GPS, etc.  The architecture 
must provide enough connectivity and bandwidth to allow 
all required sensors to be read and processed at their natural 
rate.  This may include support for Ethernet, Serial, CAN, 
or other custom Inputs and Outputs (I/O) as needed. 
ARCH-3 External Communication 

Parts of the mission require accepting input from and 
providing output to an external system, such as an OCU.  
The architecture should provide a communication 
framework and interface to communicate with external 
systems.  Per the AGVRA Concept Description, the chosen 
framework should be an industry standard protocol to 
enable interoperability with new and existing external 
systems. 
ARCH-4 Internal Communication 

The internal components of the architecture will need to 
communicate with each other to pass sensor data, 
commands, perception results, current positions, etc.  The 
internal communication between components in the system 
shall be consistent and well-defined.  Per the AGVRA 
Concept Description, the chose framework should be an 
industry standard or widely used framework to enable 
interoperability and modularity for components within the 
system. 
ARCH-5 Consistent Timebase 

As data needs to be associated between more than one 
acquisition source, and potentially more than one platform, 
a consistent timebase is needed to accurately time-stamp 
data.  This includes samples from sensors, and data from 
external sources. 
ARCH-6 Perception Subsystem 

The architecture should implement a perception system 
that provides up-to-date information about the latest 
perceived state of the environment for autonomous decision 
making.  This perception framework should handle various 
sensor input streams and identify features required for 
autonomous behaviors such as terrain traversability, safe 
and unsafe areas of travel, etc. 
 

ARCH-7 Vehicle Motion 
The platform must be controlled by the autonomy to 

traverse through difficult to navigate terrain.  The 
architecture must provide an interface to the actuation on 
the platform to allow the autonomy to execute this low-
level vehicle control. 
ARCH-8 Safety Indicators 

When the platform is operating autonomously, it must 
indicate it is in an autonomous mode in a way that operators 
and bystanders in the immediate area can use to stay clear 
of the vehicle.  The architecture must provide a way to 
expose this type of indication to the autonomy. 
ARCH-9 Autonomous Behaviors 

Due to the diverse needs of the mission profile, multiple 
independent behaviors will be required to accomplish 
individual autonomous tasks (e.g. plan to waypoint, 
maintain a formation, retro-traverse a previously traveled 
path, hold at a goal point, etc.)  These behaviors should be 
isolated and implemented separately to support re-use of the 
behaviors in other mission profiles, and extension of the 
platform for additional missions.  The architecture must 
provide a way to execute and arbitrate between multiple 
behaviors running in parallel. 
ARCH-10 System Health 

To ensure safe operation, the architecture must monitor 
the critical components of the system, such as motion 
execution, sensor health, connectivity between 
components, etc.  When a failure occurs in a component of 
the system, the architecture must take appropriate action 
depending on the impact of the failure on the overall 
mission.  This may include disabling a sensor from the 
perception pipeline if it is found to be faulty, coming to a 
stop if the vehicle is no longer able to steer or detect 
obstacles, or retro-traversing the previously traversed path 
until the error can be reported to an operator. 

5. Prototype SCION Architecture 
The existing architectures and standards used by GVSC 

and outlined by AGVRA provide an excellent baseline for 
a next generation, autonomy software architecture that 
meets the behavior requirements outlined in Section 3.  The 
prototype SCION architecture, described below, leverages 
those offerings and extends on-going efforts endorsed by 
GVSC into a single, unified design that pulls from the best-
in-breed of existing architectures, including Autonomous 
Ground Resupply (AGR) and the Robotic Technology 
Kernel (RTK), and proven communications protocols, 
including IOP/JAUS, UCS, DDS, and ROS2.  
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5.1 System Decomposition 
The overall system was first decomposed into constituent 

elements to specify the scope and boundaries of the 
autonomy software architecture. This modular approach 
also promotes re-use of existing system design approaches, 
such as the IOP Instantiation mechanism which focuses on 
standards-compliant interfaces, while emphasizing 
platform components that need additional specification not 
generally covered by the IOP. 

Error! Reference source not found. shows a r
epresentative system decomposition into a user interface, 
high-level vehicle control, and low-level hardware control 
layer taken from the Autonomous Ground Resupply 
program.   

 
Figure 1. High Level Architecture Decomposition 

• The Warfighter Machine Interface (WMI) is a particular 
application used across a number of US Army CCDC Ground 
Vehicle Systems Center (GVSC) programs. Generally, however, 
this top level component is meant to represent a user interface 
by which the warfighter or other operator interacts with the 
system. 

• The Autonomy Kit (A-Kit) represents the “brain” of the 
platform that enables the intelligent behaviors identified in 
Section 3. The A-Kit generally focuses on platform mobility, 
with emphasis on path planners, obstacle detection/obstacle 
avoidance (ODOA), localization, etc.  

• The Drive-By-Wire Kit (B-Kit) encapsulates the low level 
interfaces into the hardware of the platform. Because these 
interfaces can often be proprietary or include proprietary 
extensions to common vehicle standards like CAN or J1939, the 
B-Kit abstracts away some of those particulars, offering a 
common and consistent interface regardless of underlying 
platform. 

The goal of the prototype SCION architecture is to define 
the interfaces to and from the A-Kit, while also 
decomposing the A-Kit into notional constituent 
components and interfaces.  

Figure 2 shows the use of IOP between the different layers 
of the architecture. This diagram also proposes the use of 
IOP (and by extension, JAUS) for payloads such as 
manipulators, pan/tilt systems, UAVs, and other external 
entities. Sensors internal to the A-Kit, such as cameras, 
GPS, and LIDARs are intentionally absent from this 
decomposition.  Because of the need for tight integration 
with the world model and the rest of the A-Kit, these 
interfaces are considered part of the A-Kit and will be 
described in the next section. Sensors external to the A-Kit, 
such as those provided by payloads, are expected to be 
managed by the payload module and made available to the 
A-Kit via IOP. 

Note that the external client listed in Figure 2 shows a 
generic “controller”, generally taken to mean any user 
interface that a human operator interacts with. However, 
this is not limited to traditional one-controller/one-platform 
interfaces like the WMI. By using interoperable protocols 
like the IOP, more complex external clients, such as but not 
limited to multi-agent planning systems and AI-based 
scheduling systems, are supported natively. 

 

 
Figure 2. Top Level System Decomposition 

5.2 A-Kit Decomposition 
Based on the architecture requirements defined in Section 4, 

the A-Kit is expected to support several top- level elements 
that provide specific capabilities. Figure 3 shows an initial 
decomposition into twelve modules. 

 

 
Figure 3. Initial A-Kit Decomposition 
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The intended overall functionality of each component is as 
follows: 

• Sensors: Interfaces with sensing hardware, such as 
cameras, LIDARs, GPS, etc. 

• Object Detection: Extracts features and other 
information from the raw sensor data 

• Localization: Provides a representation of the platform 
location by fusing data from multiple sensors, such as 
GPS, INS, odometers, etc. 

• World Model: Uses perception and localization to 
convert sensor data to a representation of the 
environment, often using cost maps or similar 
representations. 

• Autonomous Behaviors: Manages the general state and 
operating mode of the A-Kit, choosing between multiple 
and potential competing objectives. 

• Planning: Provides vehicle motion planners based on the 
current objectives. 

• Motion Executor: Interfaces with the B-Kit to provide 
low-level motion control. 

• Comms Module: Where necessary, bridges between 
internal and external protocols used by the A-Kit. 

• System Health: Provides a system monitor that 
measuring the current state and health of the system, 
providing feedback to the human operator and other 
components within the A-Kit. 

• Safety Checker: Monitors and approves the commands 
generated by the planners to ensure safe operation of the 
platform. 

The notional decomposition proposed in Figure 3  follows 
the 4D/RCS design paradigm of sense-interpret-act and 
demonstrates strong overlap with the AGR and RTK 
architectures. The overall goal is to unify terminology 
across the two programs into a single top-level architectural 
representation, based on lessons-learned while following 
guidance provided by AGVRA.  Subsequent sections 
provide further detail of each component and sub-
component in terms of expected function within the system, 
the high-level data items that flow between those elements, 
and specify the message definitions that comprise the inputs 
and outputs. 

5.3 Architecture Components 
Figure 4 provides an overview of the proposed, top-level, 

A-Kit, SCION architecture. Note that the arrows represent 
messaging are intended to show only key data exchanges 
for simplicity.  

In a complete implementation, the exchange of information 
is expected to be significantly more complex between all 
components. 

 
Figure 4. Proposed new architecture, high-level diagram 

Sensor Components 
Autonomy systems generally use a suite of sensor 

technologies, including LIDAR, cameras (2D and 3D), 
GPS, IMU, and radar. These devices frequently have their 
own unique protocols for communication and control. The 
goal of Sensor Components is to abstract these unique 
needs into a common set of messages and a consistent 
representation of the output data. In a sense, the Sensor 
Components act as a device driver, translating between the 
needs of a particular sensor and instead exposing a common 
interface to the rest of the autonomy stack. Note, however, 
that the output data between sensor types can vary widely; 
the data representation of a 2D camera has different 
messaging needs than the output of a point cloud from a 
LIDAR. Therefore, the architecture must support several 
different output types based on the sensor technology 
selected for any particular implementation. 

 
Note that all sensor data must be timestamped to prevent 

relying on old or stale data. Further, the timestamp must be 
common across all computing platforms within the A-Kit, 
using a synchronized timebase. Implementations are 
encouraged to use existing clock synchronization 
approaches such as an NTP time server or similar. 
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Perception Components 

Perception potentially combines the data from multiple 
Sensor Components along with vehicle position and 
orientation information from Localization into a common 
understanding of the environment. This may include 
labeling data, extracting features such as traversable or non-
traversable obstacles, or identifying tracks for vehicles and 
pedestrians. Further, Perception may be required to 
transform the raw sensor data from Sensor Components 
into a common coordinate frame, using either a global, 
relative, or vehicle-centric frame of reference. 

 

 
 
Note that, like Sensing Components, one or more 

Perception Components may exist within an 
implementation.  These Components may vary in terms of 
their capabilities.  For example, one Perception Component 
may be able to extract human figures and provide 
predictions as to future positions in space based on 2D 
camera imagery, while another might use LIDAR point 
clouds to identify the ground plane and slope of local 
terrain. The architecture is capable of supporting these 
disparate functionalities so long as each uses the common 
set of specified input and output messages. 

Perception Components provide additional processing 
and analysis on the raw data produced by Sensing 
Components before being consumed by the World Model. 
As with the sensor data, the specific nature of the messaging 
inputs and outputs is highly dependent on the sensor 
modalities and the nature of the feature extraction.  

Localization Component 

The Localization Component is responsible for estimating 
and representing the platforms position, orientation, 
velocity and acceleration in three-dimensional space. 
Generally, some combination of GPS, IMU, and wheel 
encoders is used, but additional sensing methods are 
possible and must not be limited by the architecture. As a 
result, the inputs to the Localization Component are not 
defined. The implementation might use Sensor 
Components that wrap hardware devices or communicate 
with those devices using their native protocols. 

 
Generally, a global frame of reference, such as lat-lon, 

UTM, or ECEF using a WGS84 datum, is the most portable 
between vehicles and the OCU.  However, these global 
frames are generally not useful for path planning as they do 
not support a continuous flat plane.  

To that end, the localization must use a minimum of three 
frames: 1) a global frame completely unique across the 
surface of the Earth, such as lat-long, ECEF, or UTM with 
zone information; 2) a relative Cartesian frame that is 
continuous and suitable for computing the relative position 
of objects in the vicinity (generally under 20 kilometers); 
and 3) a vehicle-centric frame suitable for vehicle-relative 
information such as velocity and acceleration.  The 
relationships between these three frames are tracked over 
time, such that it is always possible to transform coordinates 
between all three frames. 

World Model Component 

The World Model Component converts data from 
Perception and Localization into cost maps for 
consumption by Planner Components. Generally, an 
implementation is expected to have only a single World 
Model Component, which may combine data from multiple 
Perception Components and serve multiple Planner and 
Autonomy Components.  

The goal of World Model is very similar to that of 
Perception: to interpret and provide information about the 
environment around the vehicle. However, while 
Perception is generally based on information only from 
current time, e.g. the most recent sensor data, the World 
Model maintains some history over time. This allows the 
World Model to “remember” obstacles that have gone out 
of the sensor field of view, as well as provide information 
about the confidence level of any obstacles detected. 
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The World Model uses inputs from the Localization and 
Perception Components to form an understanding of the 
world, while taking requests for specific areas and 
resolutions from costmap clients. Note that the World 
Model must support multiple clients simultaneously, 
potentially providing different maps to different clients 
based on the topic name. Further, each client can configure 
multiple cost maps requests, varying in size, resolution, or 
frequency. 

Since one-and-only-one World Model Component is 
expected to exist within the A-Kit, the Component uses a 
ROS “service” approach based on a request/response 
paradigm.  The World Model client initiates the transaction 
by sending a CostMapRequest with applicable data such as 
size and resolution, while the World Model responds using 
the same CostMapRequest structure but populating the 
“topic” field.  The client can then subscribe to that topic to 
receive the CostMap messages. 

Autonomy Management and Arbitration 

The Behavior, Assignment, Planner, and Motion 
execution systems each employ the same Manager/Arbiter 
framework, largely derived from the AGR architecture. At 
each level, an overall Manager controls the activation of 
one or more individual components, based on commands 
from a higher level in the autonomy stack.   

 
 

At each layer, individual components register themselves 
at runtime with the component manager by publishing a 
status message to a pre-defined topic.  This status message 
contains information about the component such as its name, 
a unique identifier, and feedback as to whether it is 
activated or has completed its task.  The component 
manager uses these status messages to monitor the health of 
individual components.  If a component does not respond, 
or fails to reflect the commanded activation state, the 
component manager can take action to disable or report the 
component. 

The component arbiter is responsible for validating the 
output of one or more components based on the component 
manager’s activation status, and individual component 
status.  These validated outputs are passed to the next layer 
in the autonomy stack. 

The Autonomy is broken up into four layers, or systems, 
each implementing the same Management/Arbiter 
framework.  First is the Behavior Management System, 
which is responsible for setting the high-level state of the 
system.  The next is the Assignment Management system, 
which supports execution of one or more autonomous tasks 
in support of the commanded behavior.  Following that is 
the Planner Management system, which accepts path or 
waypoint commands from Assignments and generates low 
level motion primitives.  Finally, the Motion Management 
Subsystem accepts motion primitives from a planner and 
translates them to low-level control messages for direct 
execution by the vehicle.  

This layered structure is based on the 4D/RCS approach 
of multi-tiered autonomy and increasing resolution and 
allows for each tier to operate based on specific constraints.  
For example, the output of the Motion Executor 
Components is often published at a faster rate than the 
Planner Components to support low-level controller 
feedback and watchdog functions.  Additionally, the run-
time nature of component discovery and activation allows 
for new components to be added to the system at multiple 
layers without the need to change code in the manager and 
arbiter components. 

Behavior Management System 
The Behavior Management System represents the top-level 

autonomy of the A-Kit, managing the overall state and 
behavior (autonomous or otherwise) of the system.  This 
component receives state change requests from the OCU and 
selects the active behavior based on the registered Behaviors, 
as well as the current health of the system generated by the 
Health Monitor and Diagnostics Component.  It is responsible 
for safely transitioning between behaviors, and for arbitrating 
the output of behaviors. It is made up of three distinct 
components: the Behavior Manager, the Behavior Arbiter, and 
a collection of one or more behavior modules. 

The Behavior Manager accepts inputs from external sources, 
such as commands from an operator, to manage the top-level 
state of the system e.g. teleoperation versus waypoint 
following versus leader/follower.  Each top-level state 
corresponds to a behavior module.  When a top-level state is 
commanded, the behavior manager evaluates the system state 
and diagnostics information from the health monitor 
component to verify that the interlocks are met to activate the 
behavior and change the top-level state.  When the interlocks 
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are successfully met, the Behavior Manager sends an 
activation command to the behavior. 

The Behavior Arbiter acts as an intermediary between 
individual behaviors and the downstream assignment 
manager.  The Behavior Arbiter receives behavior activation 
information from the Behavior Manager, and assignment 
activation requests from all running behaviors.  The output 
from the activated behavior is re-published on a known topic 
to the Assignment Manager. 

Individual behaviors all implement the same basic interfaces 
for integration into the Behavior Management System.  They 
each publish a status message at a fixed rate which acts both 
as a watchdog and as feedback for the Behavior Manager as to 
the operational state of the behavior.  Behaviors all subscribe 
to the Behavior Manager’s activation topic and activate 
themselves when indicated.  Finally, behaviors publish 
activation requests for Assignments that implement the 
behavior.  These commands are verified and re-published by 
the Behavior Arbiter.  Multiple behaviors may register with 
the Behavior Management System, but only one behavior can 
be active at a time. 

Although the Scion architecture defines the coordination 
within the Behavior Management System, it is not intended to 
restrict the capabilities of any individual behavior module. 
This modular approach allows for a wide range of behaviors 
from simple teleoperation to bleeding-edge autonomous 
agents and AI-based intelligent reasoners.  This flexibility and 
future growth is one of the core benefits of the modular, 
layered design. 

Assignment Management System 
The Assignment Management system controls the 

activation, execution, and arbitration of outputs from 
individual Assignment modules.  Assignments are 
components that implement autonomous functions in support 
of a high-level behavior.  For example, a Convoy behavior 
may request activation of a Leader assignment for a convoy 
leader which collects the trail traveled by the vehicle and 
transmits it to other vehicles.  At the same time, it may also 
request activation of a Convoy assignment on all vehicles to 
facilitate inter-vehicle position updates to all members of a 
convoy. 

Assignments register themselves with an Assignment 
Manager at startup, and behaviors request the activation of one 
or more assignments depending on the high-level mission 
goals.  Behaviors may sequence the requests for activation/de-
activation of assignments to perform complex or multi-stage 
behaviors. 

The Assignment Arbiter monitors the assignment selection 
state, and when multiple assignments are active, arbitrates 
between them to determine which assignment outputs to 
forward to the Planner Management System.  Assignments 

request the activation of a planner in the navigation 
management system and provide the planner with an objective 
point or path to achieve. 

Individual assignments may also send and receive messages 
to other subsystems, such as the world model or inter-vehicle 
communications. 

The Assignment Management System has the same structure 
as the Behavior Management System: An Assignment 
Manager and Assignment Arbiter manage the activation and 
output of one or more assignment modules. 

The Assignment Manager subscribes to activation requests 
from the Behavior Manager and uses those requests to enable 
and disable the execution of assignments.  Unlike the Behavior 
Management system, one or more assignments may execute in 
parallel.  This gives rise to complex behaviors, as Assignments 
can share and coordinate information with each other, as well 
as with other elements of the system. Assignments that control 
vehicle motion publish at least two messages: a path or goal 
objective for a planner, and an activation request for a planner 
to act on that objective.  Assignments that perform tasks that 
do not affect vehicle movement (e.g. inter-vehicle 
communication, or recording paths for followers or retro-
traversal,) do not have to publish either of those messages. 

The Assignment Arbiter accepts the output of individual 
assignment modules and re-publishes the path or goal 
objective of the assignment with the highest execution priority 
to the Planner Manager component. 

Planner Management System 
Planner Components, or planners, provide increasing 

resolution to the goals published by Assignments. Planners 
must determine a navigable path to a commanded destination, 
avoiding both moving and stationary obstacles as reported by 
the World Model.  

An implementation may contain multiple planners, each with 
its own unique application.  For example, some planners may 
operate better in open-world conditions while others specialize 
in road following. Since multiple planners may be present, a 
single Planner Manager  is responsible for selecting which 
planner is active at any given time. This is like the Behavior 
Management mechanism used to select and activate its 
different Behavior Modules. 

In addition to the target trajectory, an active planner must 
also generate a “safe harbor” plan. For small slow vehicles, 
this may simply be a command to immediately stop using zero 
velocity. For larger, more complex platforms, the safe harbor 
is a trajectory that will bring the vehicle to a controlled stop 
and quickly and safely as possible such as using the first points 
of the commanded path to decelerate or continuing along the 
current heading until stopped.  The system is never expected 
to execute the safe harbor plan, but it may be needed if failures 
or fault conditions arise. 
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The Planner Management System has the same structure as 
the Behavior Management System: A Planner Manager and a 
Planner Arbiter manage the activation and output of one or 
more Planner modules. 

The Planner Manager subscribes to activation requests from 
the Assignment Manager and uses those requests to enable and 
disable the execution of Planner modules.  Only one Planner 
module may be active at a time.  Planner modules all accept a 
goal point or path, but each planner must define the semantics 
of that input (e.g. does the planner plan to a point or a path, 
should the desired path lie along the vehicle’s current 
position).  It is expected that assignments select a planner with 
the needed capabilities to execute the desired motion and 
provide semantically correct inputs as defined by that planner.  

Planners are responsible for requesting the activation of an 
appropriate motion executor to execute the desired path.  Each 
planner should use the available world model information 
from the World Model Component (e.g. costmaps) to plan a 
navigable path.  Planners should each request an appropriate 
costmap from the World Model component, either during 
initialization or when activated. 

The Planner Arbiter accepts motion executor activation 
requests, path commands, and safe harbor paths from all 
planner modules and re-publishes output from the currently 
activated planner to the Motion Execution system. 

Motion Executor Management System 
The Motion Executor (ME) Components are the lowest 

levels of control within the A-Kit, converting the navigable 
plans from the active Planner Component to actionable 
commands to the B-Kit. Motion Executor output is based on 
motion primitives, such as commanded velocity and curvature 
(or steering commands) that are easily executed by the B-Kit. 

Like the Planner Components, multiple Motion Executors 
can exist in a single implementation. A single Motion Executor 
Manager selects and activates a specific ME based on the 
autonomy mode and the capabilities required. Note that this 
structure is largely for future proofing, as generally systems 
will have only a single ME to convert commanded plans to 
motion primitives based on the capabilities of the vehicle. 

In addition to decomposing the active plan into motion 
primitives, the active Motion Executor must also forward the 
safe harbor plan. This plan is passed through unaltered; hence, 
the B-Kit itself must be capable of executing the safe harbor 
plan in the event it becomes necessary. 

The Motion Executor Management System has the same 
structure as the Behavior Management System: A Motion 
Executor Manager and a Motion Executor Arbiter manage the 
activation and output of one or more Motion Executor 
modules. 

 

The Motion Executor Manager requests the activation of a 
single Motion Executor Module based on the request from the 
Planner Arbiter.  Only one motion executor can be active at a 
time. 

Each Motion Executor module is responsible for translating 
an input path into a set of primitive commands for the 
underlying platform to execute.  The exact format of these 
motion primitives may vary depending on the capabilities of 
the underlying platform controller.  Motion Executors are also 
responsible for forwarding a Safe Harbor command to the 
underlying platform. 

The Motion Executor Arbiter accepts outputs from each 
Motion Executor and forwards the commands from the active 
Motion Executor to the underlying platform. 

Communications Component 

Data exchange, whether OCU-to-vehicle, vehicle-to-
vehicle, or A-Kit to B-Kit, is expected to use IOP. Internal 
to the A-Kit, however, messaging is based on ROS2. The 
Comms Model Component, sometimes called an IOP-to-
ROS bridge, converts between these two protocols. As such 
it becomes the gatekeeper for information flowing into and 
out of the A-Kit. 

 

 
 

   Since the Comms Module Component is a translator and 
does not generate or consume messages on its own, specific 
inputs and outputs are not enumerated.  Rather, the breadth 
of the bridge is based on the message set of the A-Kit itself 
as well as the particular IOP Instantiation defined for the 
mission. As such, the input and output messages consist of 
any messages specified by the IOP Instantiation for the 
specific project or program realizing this architecture, and 
the ROS messages defined therein.  

Health Monitor and Diagnostics Component 
The Health Monitor and Diagnostics Component 

monitors the overall health of the system. Consequently, it 
can be configured to monitor the message traffic from 
virtually any component in the A-Kit and detect problems 
that prevent safe and normal operation. Any such problems 
are reported out to the OCU for display to the human 
operator, and also reported to the Behavior Manager to 
properly manage any necessary state transitions associated 
with the error. 



 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

An Open, ROS2, AGVRA-Based Autonomy Software Architecture for Military Robotic and Autonomous Systems,  
Thomasmeyer, et al 

 

Page 12 of 12 

 
DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4251 

 
 
AGR in particular uses a sophisticated scripting language 

to configure the specific health checks and resulting 
behavior of the Component. While such an approach leans 
more towards implementation than architecture, it is noted 
that such an approach offers significant flexibility at run-
time without the need to modify and recompile code. As a 
result, implementations are encouraged to consider this 
solution. 

The capabilities of the Health Monitor are largely 
dependent on the specific program, vehicle, and common 
failure modes. Because of that, the design constraints 
specified by this architecture are minimal. The 
implementation may subscribe to any message within the 
architecture and monitor for warning and error conditions.  

Safety Checker Component 

The Safety Checker is an optional component for safety 
critical platforms and programs, generally involving larger 
and/or faster vehicles with significant potential for human 
injuries or fatalities in the event of a failure. One and only 
one Safety Checker Component is expected per vehicle. 

 

 
 
The Safety Checker Component runs on dedicated 

hardware, and serves as the final gatekeeper between the 
Motion Executor Components and the B-Kit. In the event a 
failure or unsafe condition is detected, the Safety Checker 
can alter the commanded path or force execution of the safe 
harbor plan.  It is expected that the Safety Checker 
implementation would be certified by relevant DoD 
authorities. 

 
 

The Safety Checker is largely a pass-through component, 
providing a safety-critical validation of the Motion 
Executor commands between it is passed to the B-Kit for 
execution on the platform. Consequently, the inputs and 
outputs are the same message structure; however, the 
message data may be modified by the Safety Checker if an 
error condition is detected.  Note that the publication rate is 
expected to match that of the incoming message rate. 
Further, the Safety Checker must not cause significant 
latency of the command stream. 

 

6. CONCLUSION / PATH FORWARD 
   The project to develop an initial design for a common, 
open, Government-owned, autonomy software architecture 
has resulted in a promising prototype with the potential to 
provide the flexibility needed by the both the Government 
and industry RDT&E communities to leverage reusable 
software and more rapidly innovate new capabilities; while 
ensuring the discipline and enabling the modularity 
required to develop RDT&E software structured to meet the 
software safety, cybersecurity, upgradeability, and other 
needs of RAS programs of record. The next steps for further 
advancing the prototype SCION architecture include the 
following: 

Ø Leveraging the AGVRA libraries and meta-models:  
capture the system requirements in SysML, complete a 
detailed design of the SCION architecture, and capture 
the detailed design in SysML 

Ø Defining, capturing, and modeling the interfaces and 
data flow among the components in the SCION 
architecture, using the AGVRA Data Interoperability 
Architecture (DIA) artifacts and meta-models 

Ø Developing a ROS2 interface definition set for the 
SCION architecture leveraging the newly created 
SysML models and inter-component data definitions 

Ø Determining the vehicle and sensor characteristics of a 
target RAS platform and creating an AGVRA physical 
model viewpoint of the system 

Ø Investigating and analyzing how elements of other 
autonomy software architectures might be incorporated 
into future versions of the SCION architecture and 
develop a long-term roadmap  

Ø Investigating whether and how the RTK packages 
converted to ROS2 under the MARS project might be 
subsequently migrated to the SCION architecture 

 


